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Abstract

It is often said that language is contextual, in the sense that the meaning of a word is
highly dependent on the context it is found in. On the other hand, contextuality is a
well-defined concept in probability theory, and in particular has been heavily studied in
Quantum Mechanics, as it is considered as a major resource for the quantum advantage in
Quantum Information Theory. In this project, we investigated whether natural language
does exhibit some of these contextual features. We show in this report that meaning
combinations are indeed contextual, and that certain phenomena can be expressed in
terms of a sheaf-theoretic framework borrowed once again from quantum mechanics. This
study opens the possibility of treating semantic analysis from a contextuality point of
view.
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Introduction

Dealing with ambiguity is a key challenge in Natural Language Processing (NLP) and
does generally require a heavy amount of hand-annotated data, and large dimensional
vector representations. On the other hand, quantum computing and the emergence of the
field of Quantum Natural Language Processing offers some promising leads for tackling
some of the biggest obstacles of classical NLP. In particular, some recent studies have
shown that methods from quantum theory can be applied to natural language applica-
tions, to obtain get a better insight into peculiar phenomena, and more accurate models
of ambiguity. In this project, we investigate the contextual nature of combinations of
ambiguous phrases, using the framework introduced in [5, 3]. The obtained results re-
vealed some rather unexpected properties about meaning interaction, thus introducing
some encouraging data for the study of ambiguity as a contextual feature of the English
language.

The study carried out in this project is based on specific examples. Indeed, the
existence of some examples satisfying certain properties (here contextuality) is more im-
portant than obtaining a general statement which is true for all possible instances – just
like in quantum mechanics, some measurements on quantum systems can be reproduced
by solely statistical uncertainty, but it is the existence some sets of experiments with spe-
cial statistical properties, e.g. violating Bell inequalities, which makes quantum statistics
distinct from classical theories.

The first part of this report exposes the literature on both the study of contextuality
in quantum systems (Chapter 1), and methods in NLP (Chapter 2). The second part,
on the other hand, is entirely original. Chapters 3 and 4 are fairly independent. In
Chapter 3, we will be interested in contextual features of meaning combinations using
models similar to Bell experiments. In Chapter 4, we focus on peculiar sentences known
as garden-path sentences using a framework similar to the sheaf-theoretic model usually
used for quantum contextuality.
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Part I

From Quantum Contextuality to
Natural Language
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Chapter 1

Quantum Contextuality

Early critics of quantum mechanics claimed that quantum theory was not complete[29],
but instead was subject to unobserved hidden variables, as claimed that any physical the-
ory should satisfy local realism. By local realism, one means that in a “complete” physical
theory, the global behaviour of a system is entirely, and deterministically, determined by
a set of local variables. However, the well-known Bell theorem[10], supported by experi-
mental data[12], shows that a description of quantum mechanics cannot comply with local
realism; assuming on the other hand that a physical theory needs to be realist to some
extent, i.e. that physical quantities have a “reality” which is independent of the observer,
it is the locality assumption that needs to be dropped.

1.1 Bell scenarios and Bell inequalities

The Bell inequalities were the first proofs of the non-existence of (local) hidden-variables
in quantum mechanics. Thsection aims to introduce the basic concepts behind those
inequalities, paving the way onto the formulation of contextuality in Section 1.2.

Given a probabilistic system defined on the set of variables Ψ, one wants to “extend” it
to include extra unobserved variables (i.e. hidden variables), such that the observed prob-
ability distribution corresponds to the marginal distribution, averaged w.r.t. all hidden
variables. For example, given measurements A,B,C, . . . with associated probability dis-
tribution P , and some outcomes a, b, c, . . . we define a compatible hidden-variable model
as an extension of the original model if there exists a probability distribution Q s.t.:

P [a, b, c, . . .|A,B,C, . . .] =

∫
Λ
dλQ(λ)Q [a, b, c . . .|A,B,C, . . . , λ] (1.1)

In particular, if only local hidden-variables are considered, then the the probability dis-
tribution Q needs to satisfy:

P [a, b, c, . . .|A,B,C, . . .] =

∫
Λ
dλQ(λ)Q [a . . .|A, λ]Q [b . . .|B, λ]Q [c . . .|C, λ] . . . (1.2)

There are different types of hidden-variable models, e.g. parameter-independent mod-
els or λ-independent models(see [14, 2] for a full classification of hidden-variable models).
However, the most commonly studied type, at least in the context of quantum mechanics,
is the deterministic hidden-variable model, in which the values of the hidden-variables
determines the values of the observables with certainty. In particular, the existence of a
deterministic hidden-variable model. This implies that all observations on a given quan-
tum system can be computed deterministically by local variables only.
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As we know, however, it is not possible to define a deterministic hidden-variable model
that is fully consistent with observations on quantum systems. This can be shown from
Bell-type experiments, or Bell scenarios, which can be described as follows. We consider
two parties A and B, which can be assumed to be spacelike separated (in order to avoid
communication between them). The two parties are known to share a quantum state,
which is usually entangled1, are each free to apply local operations and measurements
on their respective subsystems. In addition, if we fix the set of possible operations and
measurements that each party is allowed to make, then they can record which experiment
they have carried out and which outcome they have measured (see Fig. 1.1). After many
repetitions of this procedure, they can meet, and compute joint probability distributions
given their respective choice of experiments (i.e. given s global measurement context).

Outcome 0 Outcome 1

A

a a’

B

b b’

Figure 1.1: Bell experiment. This particular event corresponds to [(a′, b) 7→ (0, 1).

The no-signalling property translates, in terms of the obtained statistics, as the condi-
tion that the marginal probabilities of each party, given one choice of a local measurement,
do not depend on the global measurement context (otherwise, A or B might be able to
infer which local measurement has been chosen by the other party, which is therefore
non-local information which can instantly be obtained), formally:

P [oa|a, b] = P
[
oa
∣∣a, b′] (1.3)

(and similarly P [ob|a, b] = P [ob|a′, b]). The Bell inequalities are generally presented under
the form of the CHSH inequality [19], which is stated as follows: given four binary mea-
surements Q,R, S and T taking the values ±1, then it can be shown that the expectation
value of the operator QS +RS +RT −QT satisfies:

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 ≤ 2 (1.4)

However, if Q,R and S, T are local measurements of the state |Ψ〉 = 1√
2

(
|01〉 − |10〉

)
on

local systems A and B respectively, s.t.:

Q =ZA (1.5)

R =XA (1.6)

S =− ZB +XB√
2

(1.7)

T =
ZB −XB√

2
(1.8)

1Entanglement is necessary to obtain non-classical statistics.
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(where Z = +1·|0〉 〈0|−1·|1〉 〈1| andX = +1· 12
(
|0〉+ |1〉

)(
〈0|+ 〈1|

)
−1· 12

(
|0〉 − |1〉

)(
〈0| − 〈1|

)
),

then one can show that:

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2 > 2 (1.9)

This apparent contradiction comes from the fact that all of these measurements do not
belong to the same measurement context, and in fact, the expectations values corresponds
to incompatible situations.

1.2 The Kochen-Specker theorem

The Bell inequalities offers a proof by contradiction that one cannot extend the proba-
bilistic model obtained from observations of quantum systems to a deterministic hidden-
variable model. In [43], Kochen and Specker prove a stronger statement about the exis-
tence (and non-existence) of hidden-variable models.

In order to understand the so-called Kochen-Specker theorem, we start with the fol-
lowing observation: physical observables can be related to each other via functions, e.g.
B̂ = g(Â) = Â2; then measuring the value a ∈ R for the quantity Â implies that the cor-
responding value of B̂ would then be a2. However, if physical quantities have a definite
value given a specific state ψ (as it would in a deterministic hidden-variable model), this
condition that can be rewritten as the existence of a function fÂ : Ω→ R s.t. for very B̂

s.t. B̂ = g(Â) for some function g, we need to have[43]:

fB̂ = g ◦ fÂ (1.10)

and hence, the above condition corresponds to a necessary condition to the existence of
a deterministic hidden-variable model.

1.3 Abstract approaches to contextuality

In this section, we describe a framework for characterising contextuality and the Kochen-
Specker theorem introduced in the previous section, using the concept of presheaves.

1.3.1 Categories and presheaves

Presheaves have historically been used in topology and algebraic geometry[47], as a way
of studying the global features of a topological space w.r.t. to its local features.

In order to define presheaves, we start by introducing the notion of a category. A
category C[46] consists of a collection of objects and arrows (or morphisms) between
them, such that:

- Each object A ∈ C has an identity morphism idA : A→ A;

- If f : A → B and g : B → C are arrows in the category C, then the composition
g ◦ f : A→ C is an arrow in C.

In particular, we define the category Set for which objects are sets, and morphisms are
functions between sets. A contravariant functor [46] between two categories C and D is a
map F , denoted, F : Cop → D such that:
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- For each object A ∈ C, F (A) in an object in D;

- For each morphism f : A→ B in C, the morphism Ff : F (B)→ F (A) is a morphism
in D (note the reverse order of the arrow2);

- For each object A ∈ C, the morphism FidA : F (A)→ F (A) is the identity morphism
of F (A) in D.

- For each pair of arrows f : A→ B and g : B → C in C, we have F (g ◦f) = Ff ◦Fg.

From this, we define a presheaf as a contravariant functor to the category of Set, i.e.
F : Cop → Set for some category C.

A global section[47] on a presheaf F is a function γ : X → Set such that for all A ∈ C,
γ(A) ∈ F(A), and for all f : B → A in C:

Ff (γ(A)) = γ(D) (1.11)

On the other hand, a local section is a function γ̃ : X → Set from a subset of objects X
of C, such that the condition (1.11) is satisfied for whenever A and B are in X.

There are several possible choices of presheaves that one can make to study quantum
contextuality. We will, for most of this report consider the distribution presheaf DE
which we will now introduce; however other possible choices studied in the literature will
be described in Section 1.4.

1.3.2 Empirical models and presheaves

We now want to express results of quantum experiments in terms of presheaves. To do
so, we consider experiments similar to Bell scenarios described in Section 1.1. The set of
all possible measurement contexts, i.e. the set of all possible joint measurements will be
denoted by M, whereas the set of all possible individual measurements will be denoted
by X. For example, in the case of a bipartite system A⊗B, where A and B are choosing
their local measurements in the set {a, a′} and {b, b′} respectively, we have:

M = {(a, b), (a, b′), (a′, b), (a′, b′)} (1.12)

X = {a, a′, b, b′} (1.13)

An event will be defined as an assignment from a measurement context to an outcome;
for example, assuming that both a and b are binary measurements taking values in {0, 1},
[(a, b) 7→ (0, 1)] will be a valid event. We then define a first presheaf, namely the event
presheaf : E : P(X)op → Set, where the category P(X) is defined as follows:

- The objects of P(X) are all the possible subsets of X;

- There is a unique arrow ⊆: A→ B iff A ⊆ B.

We then define the set E(A), for A ⊆ X, as the set of all possible assignments from A to
the set of possible outcomes O; note that one can always define a uniform set of outcomes
for any set of measurements by relabelling and/or adding “extra” impossible outcomes.
We also define the image of morphism under the presheaf E as the restriction morphism:

E(A ⊆ B)(B) = E(B)|A ∀A ⊆ B, A,B ⊆ X (1.14)

2A covaraint functor, or just functor, does preserve the directions of arrows.
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for example, [(a, b) 7→ (0, 1)] ∈ E({a, b}) will be mapped, under the restriction in a
(i.e. A = {a}, B = {a, b}), to [a 7→ 0] ∈ E({a}). It can easily be shown that this
definition of morphisms satisfies the presheaf conditions. A global assignment will refer
to an assignment of all measurements in X to an outcome.

We note that the concept of observations of certain events, or probabilities of events, are
so far not taken into account. We define the family of probability distribution associated
with all the possible joint measurements as the empirical model of the experiment[5]. This
empirical model can be represented in the form of a table (e.g. see Fig. 1.2). We then

A B (0,0) (0,1) (1,0) (1,1)

a b 1/2 0 0 1/2
a b′ 3/8 1/8 1/8 3/8
a′ b 3/8 1/8 1/8 3/8
a′ b′ 1/8 3/8 3/8 1/8

Figure 1.2: Empirical model associated with the measurement of the bipartite state |Ψ〉 =
1√
2

(
|00〉+ |11〉

)
with local measurements a, b = |1〉 〈1|A,B and a′, b′ = |φ〉 〈φ|A,B where

|φ〉 =
√

3
2 |0〉 −

1
2 |1〉.

describe empirical models in terms of a presheaf, namelyDR+E where each subset A ofX is
associated with the set of all probability distributions on possible assignments of outcomes
on A. An empirical model in this framework is therefore a choice of local sections from
this presheaf, restricted to the measurement contexts inM, and the observed probability
distributions. In addition, a global section on this presheaf DR+E is a distribution d ∈
DR+E(X) which assigns a probability to every global assignments s ∈ E(X) so that it
forms a probability distribution which is consistent with all of the observed probabilities.
Hence, an experiment demonstrates contextuality iff the presheaf DR+E has no global
section.

Computing global sections As shown in [5], given an empirical model, its global
sections can be found as the solution of a linear system of equations. Indeed, by fixing an
ordering of the local sections (see e.g. Fig. 1.3a for a Bell-type scenario), and an ordering

for the global assignments (see Fig. 1.3b), then we define the incidence matrix M̃ as

A B (0,0) (0,1) (1,0) (1,1)

a b s1 s2 s3 s4

a b′ s5 s6 s7 s8

a′ b s9 s10 s11 s12

a′ b′ s13 s14 s15 s16

(a) Enumeration of local sections for a
Bell scenario.

t1 = [(a, b, a′, b′) 7→ (0, 0, 0, 0)]

t2 = [(a, b, a′, b′) 7→ (0, 0, 0, 1)]

t3 = [(a, b, a′, b′) 7→ (0, 0, 1, 0)]

t4 = [(a, b, a′, b′) 7→ (0, 0, 1, 1)]

...

(b) Enumeration of global assignments
for a Bell scenario.

follows[5]:

M̃i,j =

{
1 if tj |C = siwhere si ∈ E(C)

0 otherwise
(1.15)
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Hence, a solution x of the system M̃x = ṽ, where ṽ is the column vector ṽ = (si)i,
corresponds to coefficients xj for which

∑
j xjtj is exactly the observed empirical model.

In addition, we want to restrict these coefficients to be within [0, 1], as we want them to
represent probabilities; similarly, since we also want

∑
j xj = 1, so we will consider the

augmented incidence matrix M (and respectively the augmented vector v):

M =

(
M̃

1 1 1 . . . 1

)
(1.16)

v =

(
ṽ

1

)
(1.17)

A solution to the system Mx = v in the positive real numbers therefore corresponds to a
global section of the presheaf DR+ . For simplicity, we will refer to the augmented incidence
matrix as simply the incidence matrix for the rest of this report. The full expression for
the incidence matrix can be found in Appendix A, as well as the proof of non-existence
of a global section for the empirical model depicted in Fig. 1.2.

1.3.3 Logical contextuality

We now describe an even stronger type of contextuality. Indeed, instead of considering
probability distributions, we here consider distributions over the Booleans B = {0, 1}.
From a probability distribution P over the events e1, e2, . . . ∈ Ω, its associated Boolean
distribution PB is given by:

PB[ei] =

{
1 if P [ei] ; i.e., ei is possible

0 otherwise; i.e., ei is impossible
(1.18)

Any Boolean distribution also has to satisfy the following:∨
i

PB [ei] = 1 (1.19)

i.e. there is at least one possible event3. Hence, we can reconsider the empirical models
with Boolean distributions by considering the presheaf DBE , which associates Boolean
distributions on measurement-outcome assignments. For example, the Boolean empirical
model from Fig. 1.2 is given by:

A B (0,0) (0,1) (1,0) (1,1)

a b 1 0 0 1
a b′ 1 1 1 1
a′ b 1 1 1 1
a′ b′ 1 1 1 1

(1.20)

We observe that Boolean distributions corresponds to the support of the different prob-
ability distributions. Hence, a global section on the presheaf DBE corresponds to the
existence of a family of global assignments compatible with the support of the proba-
bility distributions, so that each possible event is part of at least one of these global
assignments. For example, in the empirical model in (1.20), the family {[(a, b, a′, b′) 7→
(0, 0, 0, 0)], [(a, b, a′, b′) 7→ (0, 0, 1, 1)], [(a, b, a′, b′) 7→ (1, 1, 0, 0)], [(a, b, a′, b′) 7→ (1, 1, 1, 1)],

3This is the equivalent statement of
∑

i P [ei] = 1, but in the Boolean ring (B,∧,∨), where ∧ and ∨
are respectively the and and or operations.
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[(a, b, a′, b′) 7→ (0, 0, 1, 0)], [(a, b, a′, b′) 7→ (1, 1, 0, 1)]} forms a global section. If an empir-
ical model has no global sections in the Boolean distribution presheaf, then the model
is said to be possibilistically contextual [5]. An example of a possibilistic empirical model
is the so-called Hardy model, which has been introduced in [34]. The support of the
obtained distribution is given by:

A B (0,0) (0,1) (1,0) (1,1)

a b 1 1 1 1
a b′ 0 1 1 1
a′ b 0 1 1 1
a′ b′ 1 1 1 0

(1.21)

(see [34] for the details of the proposed experiment). Indeed, the local section [(a, b) 7→
(0, 0)] cannot be consistently extended to a global assignment which is consistent with
the support (see the local sections in red in (1.21)).

Now, we note that if a Boolean empirical is possibilistically contextual, then it is
automatically (probabilisitically4) contextual, since one cannot impose a probability dis-
tribution on all possible global assignments consistent with all the observations if some of
these observations are not part of any global assignment. Hence, possibilistic contextuality
is strictly stronger than probabilistic contextuality.

We can moreover define an even stronger degree of contextuality. If no local section
of a given empirical model can be extended to a global assignment, we say that the
model is strongly contextual. An example of such strongly contextual model is the PR-box
introduced in [55]. The PR-box is an example of a “super-quantum” no-signalling process,
which cannot be realised with quantum systems. Its distribution support is given by:

A B (0,0) (0,1) (1,0) (1,1)

a b 1 0 0 1
a b′ 1 0 0 1
a′ b 1 0 0 1
a′ b′ 0 1 1 0

(1.22)

It can be shown to be strongly contextual since the first 3 measurement contexts shows
perfect correlation between all measurements from A and B, whereas the last measure-
ment context corresponds to anti-correlation from the outcomes of a′ and b′.

Bundle diagram representation We can, for simple examples as the ones considered
so far, adopt a more convenient representation of Boolean empirical models, namely bundle
diagrams[3]. In these diagrams, we represent each of the local measurements as a vertex,
and edges between every two of these vertices if the joint measurement is possible. In
addition, we depict, for each individual measurements, the set of possible outcomes as a
set “sitting” on top of the associated vertex, and an edge is added between two of the
“outcome”-vertices if the joint measurement comes with a non-zero probability (see Fig.
1.4 for examples). In particular, global assignments can be seen in these bundle diagrams
as connected loops going through exactly one outcome for each of the measurements.

4In order to be clear about which degree of contextuality is considered, we will describe standard
contextuality as probabilistic contextuality.
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a

a'

b

b'

0
1

(a) Bell scenario

a

a'

b

b'

0
1

(b) Hardy model

a

a'

b

b'

0
1

(c) PR-box

Figure 1.4: Examples of bundle diagrams.

1.4 Related work

As previously mentioned, alternative choices of presheaves can be made for the study
of quantum contextuality. The main options have been studied in the context of a topos-
theoretic approach to quantum mechanics[38, 39, 33, 16, 37].

Topos theory has originally developed as a generalisation of set theory and Boolean
logic (see [32, 47] for standard references on the subject). The basic idea is that, in some
circumstances, one might want to have more than the standard true/false truth-values.
In particular, given a category C, the associated category of presheaves SetC

op
forms a

topos, with specific generalised truth-values5. The work presented in the collection of
papers [38, 39, 33, 16] corresponds to a fairly literal application of the Kochen-Specker
theorem in terms of presheaves: observables are functions of each other but their values
do not always respect these functional relations. The propositions considered are of the
form “A ∈ ∆” which is asking whether the physical quantity A takes values in the range
∆. These propositions have (generalised) truth values w.r.t. a context, which can be
seen as a generalised version of the previously described measurement contexts. The
non-classicality of quantum systems once again appears as the non-existence of a global
section on the presheaves. The approach adopted in [37] is fairly similar to the other
topos-theoretic framework, and mostly differs from it by its choice of presheaf. A full
comparison of these two approaches can be found in [65].

5These are truth values are sieves; however, the definition of either sieves, or even evaluation and truth
values are irrelevant for the rest of this report.



Chapter 2

Ambiguity in Natural Language

We start with a peculiar observation: even though many common words in the En-
glish language are polysemous, i.e. have more than one meaning, this does not create
a considerable obstacle in the day-to-day comprehension of texts or conversations. For
example, the word charge has 40 different senses according to the WordNet corpus[61],
however, its meaning in the sentence The bull charged is fairly unambiguous. On the
other hand, Word Sense Disambiguation has shown to be a computationally difficult task
to implement, and is one of the greatest challenges of NLP.

This chapter is aimed at introducing the main methods used in NLP to model meanings
of words, as well as some promising ways in which quantum methods have been used in
this field.

2.1 Models of meaning

We start by describing in this section, the different common ways of modeling the
semantics in NLP.

2.1.1 Distributional models of meaning

Distributional models of meanings are based on a very simple observation, which first
appeared in the works of Harris[35], Firth[30] and Joos[40], namely: the meaning of a word
can be inferred from its context. For example, the word car will be found in the context
of parking, sport, crash . . . : the meaning of car therefore corresponds to its distributions
according to different contexts. The idea is therefore to associate each word with a vector
(a word-vector) in a large dimensional vector space (sometimes called the word-space),
which stores the different occurrence frequencies w.r.t. some predefined “contexts”1.

There are several possible ways of defining those “contexts” or word-dimensions. For
example, one can define the context of a specific word of interest (a head-word), as being
the document in which it is found (e.g. [56, 59] are such approaches), see e.g. Fig. 2.1.
Other alternatives are to consider the different partS-of-speech[58, 22], i.e. for example
which are the most common modifiers of the head-words and which words are more often
modified by the head-word (see Fig.2.2), or context-group discrimination as in [60, 15],
where context themselves are associated with vectors.

1For most of this report, the word context will have a more precise meaning.
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fool = ( 36 58 1 4 )
As You Like It Twelfth Night Julius Caesar Henry V

Figure 2.1: Example of a document-classified word-vector for fool w.r.t. the set of Shake-
speare plays As You Like It, Twelfth Night, Julius Caesar and Henry V. The data and
example is taken from[41] .

Modifier Counts Modified by Counts

motor 458 park 1517
police 375 sale 258
sport 224 crash 188
stolen 193 parking 138

. . . . . .

Figure 2.2: Example of counts of modifiers of / modified by car. The data is taken from
the British National Corpus(BNC)[1].

Vector-semantics have been shown to be very useful for computing meaning similarity[23,
22, 15], thesaurus generation[63, 20, 20, 52, 21] and Word Sense Disambiguation (WSD).
In general, WSD can be decomposed into two steps[60]: sense discrimination (i.e. de-
tecting whether two occurrences of the same word belong to the same sense), and sense
labelling (i.e. associating each occurrence of a word to its activated sense). In [60], Schütze
proposes a procedure for sense discrimination using context-group disambiguation. From
training data, words are associated with context vectors which store the co-occurrences
of the head-word with other words; thereafter, the contexts themselves analysed so that
contexts that are similar forms clusters in the word-space. Hence, the different senses
of an ambiguous word will correspond to different clusters. If some test data is then
input, the context of this new data is mapped into the word-space and the sense which
is activated should correspond to the one which cluster is the closest. Sense labelling on
the other hand is a more intricate problem, and current solutions usually make use of
human annotations[44], sense-tagged corpus[28] such as the Gold Standard Corpus[64] or
SemCor[48] (WordNet senses tagged corpus), although some unsupervised methods has
also been proposed[66].

The main drawbacks of the distributional models is the lack of structural information
that these word-vectors supply[51], e.g. house boat and boat house have the same vector
representations. In addition, this representation of word meanings does not seem to allow
for analogies and word association[31].

2.1.2 Symbolic representations of meaning

The distributional models described above are very convenient for computational imple-
mentations, and are particularly useful for “bag-of-words” type of applications. However,
as previously mentioned, understanding of sentences and phrases with a syntactic struc-
ture is not usually possible within those models. The symbolic representations of meaning,
however, directly exploits the grammatical structure of sentences to comprehend them.

Following from the tradition of Montague semantics[24], symbolic representations make
use of the formal language of first order logic. These semantics are generated from a
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vocabulary (i.e. set of words) including relations and functions (i.e, tuples). For example,
given the vocabulary {Alice,Bob, friend, like}, the sentence Alice likes Bob corresponds
to the relation likes(Alice,Bob) (or in other words (Alice,Bob) ∈ likes), and Alice is a
friend would be represented by friend(Alice) (or Alice ∈ friend). One can also make
use of connectives (e.g. ∧: “and”, ∨:“or”, =⇒ :“then”, ¬:“not”), as well as variables,
which can be used for references, and quantifiers (e.g. ∃: indefinite reference, ∀:“all”).
For example the sentence All cars are red and fast would be represented as ∀x car(x) =⇒
red(x) ∧ fast(x), and A car moves would be associated with ∃y car(y). moves(y).

This type of semantics has been extended to treat more complex text structures,
for example in Discourse Representation Theory[42, 36], which can be used for several
sentences, and can deal with easy examples of anaphoric references (e.g. John eats food.
He is happy).

Furthermore, even if first and higher-order semantics are less convenient for compu-
tational implementation, implementations from [17, 13] show some promising results for
scalability of symbolic representations of language.

2.2 Quantum inspired models of meaning

Both symbolic and distributional models of meaning appear to have complementary
features, and hence, attempts at combining the two approaches have been proposed (see
e.g. [18]). Interestingly, these approaches have been shown to share similarities with
the formalism of quantum mechanics, for instance by using tensor products and Hilbert
spaces[18]. We will in this section investigate some of the models of meanings that make
use of elements of quantum mechanics. In Section 2.2.1, we explore the use of density
matrices in natural language models, while in Section 2.2.2, we investigate a quantum
representation of concepts.

2.2.1 Density matrices and distributional models

We start by presenting the approach from [11], which uses an approach similar to the
distributional approach, except that words are encoded within density matrices instead
of vectors. The similarity between two words v, w is calculated by computing the inner
product of the associated density matrices: Tr(ρvρw). The method for constructing the
density matrices are using ideas from both part-of-speech parsing and document-content
classification by encoding the two types of level of probability distributions as quantum
superposition of in a pure state and statistical mixing respectively. In particular, the
obtained experimental data from [11] showed similarity with human responses, performing
better than classical models from both word similarity and word association points of view.

In addition, density matrices have also been used to encode different levels of ambiguity.
Indeed, in [54], quantum superposition is used for different, but related, meanings of a
given word (e.g. the two meanings of bank in I am looking for a bank loan and I need to
go to the bank to deposit a cheque), while statistical mixing is used for different meanings
which are unrelated, e.g. the two meanings of bank, this time in bank loan and river bank.
This model hence has the advantage of representing different types of ambiguity in a word
more accurately.

Finally, another way of using density matrices in natural language comes from lexical
entailment [9, 45]. A word is then represented as the sum of the matrices of its hypernyms
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(i.e. words which are strictly more specific). For example.:

|pet〉 〈pet| = |pug〉 〈pug|+ |tabby〉 〈tabby|+ |goldfish〉 〈goldfish| (2.1)

Now the entailment relation is defined as the Lowner order : A v B (A entails B), if
B−A is positive, for any two positive operators A and B. In the previous example, tabby
entails pet since both pug and goldfish are positive operators. We can even extend this
further by introducing a notion of graded entailment. For example, if we have:

|cat〉 〈cat| = |tabby〉 〈tabby|+ |wildcat〉 〈wildcat| (2.2)

Then, one sees that cat does not strictly entail pet, but both cat seems to entail pet “to
some extent”. Two possible measures of graded entailment have been proposed in [45] to
account for this partial entailment.

It was moreover proposed in [8] to combine the last two uses of density matrices by
constructing a “second-order” density matrix: the “ambiguity” density matrix is enriched
with an entailment dimension. However, we note that it is still not clear if this construction
will have any interpretation in terms of quantum systems.

2.2.2 Concept combinations and quantum states

The theory of concepts has been developed to categorize our “experience” of the world
in terms of concepts, such as table, pet or even good or bad. Every concept has a number
of “instances” (or exemplars) all of which share the some similarities. In particular, given
a concept, some of its instances will be more typical or more representative of the concept,
for example cat and dog, will be typical examplars for the concept pet in the way that
hedgehog or sheep are not.

The pet-fish problem concerns how concepts combine, and in particular how typicality
behaves as concepts interact. Indeed, the concept guppy is neither a typical examplar
of pet nor fish, but is a typical examplar of the concept pet fish. This problem is solved
using Hilbert spaces in [7] by hypothesising that a concept can be associated with a state
when putting into a context.

Roughly speaking, a context of a given concept is a situation where the concept is found
it. For example, The pet is running, is a context of pet.In addition, the concept, when
found in a certain context is associated with a state (for example in the context e : the pet
is running, the state pe of the concept pet, may be simply running). This state is allowed
to change when exposed to a further or different context. For example, if the context
(once again of pet) changes from:

the pet is running −→ the pet is running in circles

the state will change from running to running in circles. In addition, it is assumed that
applying the same context twice to a given state is the same as applying it once, i.e.
once one collapses the state in a certain context, it won’t change if the context remains
the same. Furthermore, states do not always change when exposed to a new context, for
example, if we consider the opposite situation:

the pet is running in circles −→ the pet is running

then the state running in circle, will not be changed when the context is changed to
running only. We say that the state pe′ : running in circles is an eigenstate of the context
the pet is running.
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From this intuition, the authors embed each of the states as a vector in a Hilbert
space[7]. In addition, the different contexts are associated with projectors on this Hilbert
space. The pet-fish paradox is then resolve by introducing correlations when considering
the combinations of two concepts: when two concepts pet and fish combine, all the states
are embedded in the space Hpet ⊗ Hfish. Subsequently, every state in the eigenspace of
the newly formed concept will be of the form:

p =
∑
u

αu |u〉 ⊗ |u〉 (2.3)

where u is a state in which the pet is a fish and the fish is a pet (note that these two
conditions are not equivalent, the former corresponds to a state in the concept pet while
the latter is a state in the concept fish). It has moreover been shown in [7] that the
obtained statistics are consistent with the intuition that goldfish and guppy as typical
examplars of the concept pet-fish.



Part II

Contextuality in Natural
Language
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Chapter 3

Contextuality in meaning
combinations

In this chapter, we will investigate mechanisms behind meaning composition of ambiguous
words. Similar to the pet-fish paradox, one can consider the two-words phrase power
plant ; each word power and plant are associated with different meanings, each coming
with certain frequencies. However, when the two words combine, the meanings activated
with highest frequency for the phrase, do not coincide with the most frequent meanings
of neither power nor plant.

To explore this, we propose an experiment similar to Bell scenarios. We consider mul-
tiple parties, or agents, each of which will choose one measurement context from a prede-
termined set. Each measurement context in this set will be the “meaning-measurement”
of a given word, which will interact with the meanings of other words chosen by the
other parties, and will return the activated meaning according to a fixed encoding. For
example the two meanings of plant could be encoded as: 0 : living organism, 1 : factory.
Each individual measurement context need not be ambiguous, but only ambiguous words
will be associated with a non-deterministic measurement. The interaction will also be
dictated by some predetermined rules, such as in which order the words are composed,
or which part-of-speech each word will correspond to. The global measurement context
will be labelled by all the different choices made by the parties, and for each global mea-
surement context, the recorded activated meaning will form a joint distribution. These
distributions can then be represented in the form of an empirical model as described in
Section 1.3, and analysed thereafter using the sheaf theoretic method from[5, 3]. In order
to obtain a valid empirical model, all the possible combinations of words need to make
some sort of sense. For example, taking two parties A and B such as A chooses a verb
in the set {pen, see} and B chooses the object of this verb within: {sheep, note}, all the
possible combinations within this experiment are possible, i.e. the phrases pen a sheep,
pen a note, see a sheep and see a note can be found in natural language. However, if the
set of verbs is changed to {pen, herd} we have a problem since the phrase herd a note
does not make much sense1.

We will furthermore restrict to 2-words combinations, i.e. two party scenarios.

Additionally, the set of ambiguous words is taken from experimental data sets from
the studies[53, 62, 57, 49].

1This condition can be relaxed, see Section 3.1.3
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choice A choice B

Agent A Agent B

Meaning interaction

Initial state

Outcome collection

Figure 3.1: Example of a 2-words scenario. The state (triangle) represents the predefined
conditions of the interaction (e.g. verb− object).

In Section 3.1 we consider a model similar to the possibilistic models described in Section
1.3.3. The aim of this section will be to show that meaning of ambiguous words in phrases
are contextual and develop intuition about the behaviour of composition of ambiguous
meanings. In Section 3.2, we investigate these properties in an empirical fashion and show
that meaning combinations observed in corpora are contextual.

3.1 Logical contextuality

We will start by considering possibilisitic models, i.e. the distributions are defined in the
Boolean ring (B,∧,∨) and corresponds to the support of some probability distributions.
In order to obtain a proof-of-principle, the different observable meaning combinations are
tabulated using common sense; and whenever results are not obvious, alternative models
are also presented.

Further examples can be found in Appendix B.

3.1.1 Semantic combinations in ambiguous contexts

We first consider a stricter model where each word is assumed to have a definite gram-
matical type (for example even though the word pen can be a verb or a noun we will
restrict to either its verb meanings or its noun meanings, but not both). We will there-
fore restrict situation where each agent is attributed a grammatical role, and the type of
phrases considered will be verb− object, subject− verb and adjective− noun.

Consider a warm-up example, with only one ambiguous word, which has two clearly
distinct meanings. We consider a verb − object example where the two verbs {pen, see}
are interacting with objects {sheep, note}. The ambiguous context is the verb pen, and
its two meanings can be seen as:

a. to pen: to write

Example: He penned a letter to his wife.

b. to pen: to put in an enclosed space

Example: The farmer penned the pigs into the barn to prevent them from escaping.

The different meanings of all the possible measurements are encoded as follows:
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Encoding
Meanings of

pen see sheep note

0 write see sheep note
1 enclose ? ? ?

Table 3.1: Encoding of meanings of pen, see, sheep and note

Where the stars corresponds to meanings which are not defined in this experiment; this
means that measuring the meanings of see, sheep and note will return 1 with probability
0. We also note that these words actually do have more than one meaning, but most of
them are irrelevant in this situation. For clarity, we only consider the following meanings:

- to see: to perceive by sight

Example: Can you see a bird in the tree?

- sheep: woolly animal

Example: The farmer is rearing sheep for their wool.

- note: short written record

Example: He made a note of the appointment

The empirical model associated with these words combinations is depicted in Fig. 3.2,
and can be understood as follows:

verb object (0,0) (0,1) (1,0) (1,1)

pen sheep 0 0 1 0
pen note 1 0 0 0
see sheep 1 0 0 0
see note 1 0 0 0

(a) Empirical model

pen

see

sheep

note

0
1

(b) Bundle diagram representation (lo-
cal sections which cannot be extended
are depicted in red).

Figure 3.2: Empirical model associated with the measurement contexts {pen, see} ×
{see, note}.

- (pen, sheep): One can enclose a sheep in a pen, but not “write” a sheep;
- (pen, note): One can write a note, but not enclosed a note in a pen;
- For the contexts (see, sheep) and (see, note), only one outcome is possible (and

indeed both seeing a sheep and seeing a note are sensible phrases).

We observe that this empirical model is strongly contextual since no local section
can be extended to a global assignment.
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In particular, there is nothing special about the verb − object situation, and other
such examples can be found for subject − verb, adjective − noun situations as well,
when considering a single ambiguous noun, verb or adjective. We will here describe a
subject − verb experiment with, once again an ambiguous verb, but other examples for
other situations can be found in the Appendix B.

We consider the measurement contexts {water, player}×{dribble, fall}, where {water, player}
are the possible choices of subject, and {dribble, fall} are possible choices of verbs. Here,
the only ambiguous verb is the verb dribble, which has the possible readings:

a. to dribble: to drip slowly; here both pouring a liquid and drooling are contained
within this meaning.

Example: The cold tap is only dribbling, it is driving me crazy.

b. to dribble: to take the ball past an opponent (in football, hockey or basketball)

Example: The footballer dribbled the ball from the goal area.

As for the previous example, the meanings are encoded as follows:

Encoding
Meanings of

water player dribble fall

0 water player drip fall
1 ? ? ball ?

Table 3.2: Encoding of meanings of water, player, dribble and fall.

Here, some assumptions about plausibility have to be made, and affects the degree of
contextuality of the model (but not the contextual nature of the measurement contexts).
Indeed, we consider that the only possible readings are:

- for (water, dribble): water drips;
- for (player, dribble): the player dribbles the ball;
- the only possible readings of (water, fall) and (player, fall).

Then the empirical model is strongly contextual (see Fig. 3.3a). However, if one assumes
that the reading (player, dribble), understood as the player is driveling, is possible, then
the model becomes weakly contextual (see Fig. 3.3b).

water
player

dribble

fall

0
1

(a) Strong model.

water
player

dribble

fall

0
1

(b) Weak model.

Figure 3.3: Bundle diagram representations associated with the measurement contexts
{water, player}×{dribble, fall}. Once again, the local sections which cannot be extended
are depicted in red.
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We are also interested in the behaviour of such empirical models when the number of
ambiguous words considered is increased. We start by comparing two ambiguous con-
texts, interacting with two unambiguous ones. The example presented here will be to
consider the ambiguous nouns {coach, kid} as the subjects of the (unambiguous) verbs
{play, drive}. The different meanings of coach are:

a. coach: Person in charge of an athlete or a sport team

Example: The coach was very pleased with the teams’ performance.

b. coach: bus

Example: We can park the coach behind this building.

Similarly, the considered meanings of kid are:

a. kid : Child

Example: This is a story we tell to kids.

b. kid : Young goat

Example: The goat is taking care of its kids.

Therefore, the different readings of each words in the empirical model are encoded as:

Encoding
Meanings of

coach kid play drive

0 sport child play drive
1 bus goat ? ?

Table 3.3: Encoding of meanings of water, player, dribble and fall.

And we argue that the corresponding empirical model is as depicted in Fig. 3.4. The

subject verb (0,0) (0,1) (1,0) (1,1)

coach play 1 0 0 0
coach drive 1 0 1 0
kid play 1 0 1 0
kid drive 1 0 0 0

(a) Empirical model

coach
kid

play

drive

0
1

(b) Bundle diagram representation

Figure 3.4: Empirical model associated with the measurement contexts {coach, kid} ×
{play, drive}.

reasoning for the example goes as follows:

- (coach, play): The only sensible meaning would be the (sport) coach plays (e.g. The
coach played football professionally when he was younger);

- (coach, drive): Both meanings of coach can be activated here, for example The coach
drive a collection car or The coach(bus) drove through the night are instances of each;
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- (kid, play): Both meanings of kid can also be activated in this context. For example:
the kids are playing in the playground can activate the child meaning, whilst the reading
goat of kid is possible in the kids are playing in the field ;

- (kid, drive): Only the (human) child meaning can be activated here (e.g. You can’t
let kids drive, that’s illegal).
This model is weakly contextual as the local sections [(kid, play) 7→ (goat, play)] and
[(coach, drive) 7→ (bus, drive)] are not part of any global assignment.

Finally, more interesting examples arise when all individual contexts are ambiguous.
We start with a verb − object example. Consider the verbs {saw, tap} with possible
meanings:

1. For saw :

a. saw : Past tense of to see

b. to saw : To cut with a saw

2. For tap:

a. to tap: to gently touch

Example: He tapped his friend on the shoulder.

b. to tap: To secretly record

Example: They were shocked when they discovered that all their phones were
tapped.

Note that tap has many more meanings (e.g. tap dance, make use of, . . . ), but these will
not be activated in the following object contexts {beam, cabinet}. Now, both of beam and
cabinet are ambiguous nouns, with respective meanings:

1. For beam:

a. beam: Column of light or particles

Example: The light beam from the lamp illuminated the room.

b. beam: Long piece of wood, metal or concrete

Example: Wooden beams are characteristic of Tudor houses.

2. For cabinet :

a. cabinet : Group of people appointed by the head of state/political party

Example: The Prime Minister has appointed their new cabinet.

b. cabinet : Piece of furniture

Example: It’s an old cabinet that I inherited from my grandparents.

In particular, the possible readings of the different phrases are:
- (saw, beam): See a (e.g. light) beam or a (e.g. wooden) beam or cut a (wooden)

beam with a saw;
- (saw, cabinet): See the members of the cabinet, see the piece of furniture or cut the

piece of furniture with a saw;
- (tap, beam): Touch a (e.g. wooden) beam;
- (tap, cabinet): Touch the piece of furniture, or secretly record the members of the

cabinet.
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while the following readings are impossible:
- (saw, beam): Cut a (e.g. light) beam with a saw;
- (saw, cabinet): Cut the governing body with a saw;
- (tap, beam): Touch a (e.g. light) beam, or secretly record either a (e.g light) beam

or a (e.g. wooden) beam;
- (tap, cabinet): Tap in the “touch” sense the cabinet (government) (or more generally

any group of people) or secretly record furniture.
The obtained empirical model and its meaning encoding are depicted in Fig. 3.5, and

is weakly contextual.

Encoding
Meanings of

saw tap beam cabinet

0 see touch light government
1 cut record wooden furniture

(a) Encoding of meanings of saw, tap, cabinet and beam.
saw

tap

cabinet

beam

0
1

(b) Bundle diagram representation

Figure 3.5: Empirical model associated with the measurement contexts {saw, tap} ×
{beam, cabinet}.

A similar analysis can be done on the subject−verb example with contexts {coach, boxer}×
{lap, file}. Indeed, we consider the same meanings (and same encoding) of coach, and
the following meaning of the other contexts:

1. For boxer

a. boxer : Professional athlete practising boxing

b. boxer: Breed of dog

2. For lap

a. to lap: To run/move around a circular track

Example: The runner lapped the park fastest

b. to lap: To drink or to lick

Example: The dog was so thirsty it lapped up all its water in seconds.

3. For file

a. to file: To document or register information (in a file)

Example: This is not acceptable, you need to file a complaint.

b. to file: To smooth (with a file)

Example: After trimming her nails, she filed them.

We make the following assumptions:
- Humans and dogs can both run on a track and drink;
- A bus can drive around a circular path, but cannot drink;
- Humans can document information, and smooth objects;
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- Neither dogs nor buses can file information or use filing tools.
This gives rise to a weakly contextual model depicted in Fig. 3.6

Encoding
Meanings of

boxer lap file

0 boxing run document
1 dog drink smooth

(a) Encoding of meanings of boxer, lap and file.
coach

boxer

lap

file

0
1

(b) Bundle diagram representation

Figure 3.6: Empirical model associated with the measurement contexts {coach, boxer} ×
{lap, file}.

Finally, we will describe an adjective − noun example, with measurement contexts
{green, light} × {bark, cabinet}. The different meanings considered are expressed as:

1. For green

a. green: Colour

Example: They stared at the green door wondering whether they had the correct
address

b. green: Environmental-friendly.

Example: The Green Party did surprisingly well in the last election.

2. For light

a. light : Not heavy

Example: He easily managed to lift the light suitcase.

b. light : Light in color, pale

Example: The sky was light blue yesterday.

3. For bark

a. bark : Tough protective covering of trees and other woody plants.

b. bark : Noise made by a dog, or similar noises

and cabinet defined as before. Now, we once again describe the assumption made in the
studied model:

- The bark of a tree can be green (colour) or environmental-friendly. Noises on the
other hand cannot be either;

- Furniture and governments can also be green (colour) or environment-friendly, but
members of the cabinet cannot be green in colour;

- Both the bark a tree or the bark of a dog can be “not heavy”, but only the bark of
a tree can be light in colour;
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- The Cabinet (government) as a whole cannot be described as light, but furniture
can be both light-coloured and not heavy.

This also gives rise to a (weakly) contextual empirical model depicted in Fig. 3.7.

Encoding
Meanings of

green light bark

0 colour not heavy tree
1 environment colour noise

(a) Encoding of meanings of green, light and bark.
green light

cabinet

bark

0
1

(b) Bundle diagram representation

Figure 3.7: Empirical model associated with the measurement contexts {green, light} ×
{cabinet, bark}.

Discussion of the results Recall that global assignments are consistent assignments
across all of the measurement contexts; in this framework, a global assignment there-
fore means that sense attribution can be made, to some extent, logically. For example,
given that [(green, cabinet) 7→ (colour, furniture)], [(green, bark) 7→ (colour, tree)] and
[(light, cabinet) 7→ (not heavy, furniture)], the next “logical” statement [(light, bark) 7→
(not heavy, tree)] is indeed possible. Hence, if all local sections can be extended to a
global assignment, then the empirical model can be described as the “superposition”2 of
all the global assignments.

What we have shown with these examples however, is that the meaning of individual
words in composite phrases cannot be described by a any global distribution on a set of
intersecting measurement contexts: it is contextual. For example, in the simple model in
Fig. 3.2, this analysis shows that knowing how the meaning see interacts with both sheep
and note, and how the meaning of pen interacts with note gives the wrong prediction as
to which meaning of pen is activated when interacting with sheep.

We have been restricting, in this section to words of a given grammatical type, or at
least meanings of a word assuming that its grammatical type is known. Now, some words
can be seen as either a verb or a noun (e.g. pen), or as either an adjective or a noun
(e.g. light) etc. Hence, considering words with this property can therefore lead to phrases
where the meaning and the grammatical type can be ambiguous. For example, the phrase
train coaches can either be a verb-phrase (i.e. training sport coaches) or a noun-phrase
(i.e. carriages of a train), and, as before, different individual meanings can be activated.
In the next section we will focus on these types of examples.

3.1.2 Ambiguous syntactic combinations

We relax the above model as to allow each word to occupy different parts-of-speech, but
keeping the word order in which they would appear in a text, i.e. the word chosen by A

2Superposition is used in a very generic sense here. In this case of possibilistic models, superposition
can be seen as a disjunction of propositions.
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will appear before the word chosen by B in a coherent two-words phrase. We will moreover
consider ambiguous words, which are ambiguous both in meaning and grammatical types.
We will, as before, subsequently record the meaning activated after interaction.

We start by considering combinations of words which can both be verbs and nouns. We
will study the example for which the agent A chooses contexts in the set {saw, leaves}
and B chooses its context within {fall, bark}. The readings of each of these contexts are:

1. For saw

a. saw (verb) : Past tense of see

b. to saw (verb): Cut with a saw

c. saw (noun): Tool for sawing

2. For leaves

a. leaves (verb) : Conjugated form of the verb to leave

b. leaves (noun): Plural of leaf

3. For fall

a. to fall (verb): To move from a higher position to a lower one

Example: They saw him fall from his bike.

b. fall (noun): Action of falling

Example: In 1989, the world witnessed the fall of the Berlin Wall.

c. fall (noun): American English for autumn

4. For bark

a. to bark (verb): Make a sound similar to the bark of a dog

Example: She woke in the night to hear men barking instructions.

b. bark (noun): Tough protective covering of trees.

c. bark (noun): Noise made by a dog, or similar noises

which gives rise to the following encoding:

Encoding
Meanings of

saw leaves fall bark

0 see leave falling make noise
1 cut leaf action of falling tree
2 tool ? autumn noise

Figure 3.8: Encoding of meanings of saw, leaves, fall and bark.

We now enumerate all the possible meaning combinations:

- In the case of saw fall : one can observe the fall of something or somebody as well
as seasons passing; one cannot saw neither a fall nor a season and finally, a saw can fall;

- For saw bark, we start from the assumption that sounds cannot be seen (but a tree
bark can); similarly, sounds cannot be sawed, but a tree bark can , and a saw can bark;
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- For leaves fall : the leaves of a tree can fall, and one can leave a season (e.g. He
leaves fall with bitterness), and these are the only possible readings;

- Finally, in the case of leaves bark, only the verb− noun readings are possible (since
plant leaves cannot make loud noises), and both noun readings of bark are possible (e.g.
Dragging the bark leaves a trace on the floor, or the bark leaves the dog’s mouth).
This leads to the empirical model depicted in Fig. 3.9 which counts a unique global
assignment.

A B (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

saw fall 0 1 1 0 0 0 1 0 0
saw bark 0 1 0 0 1 0 1 0 0
leaves fall 0 0 1 1 0 0 0 0 0
leaves bark 0 1 1 0 0 0 0 0 0

(a) Empirical model

saw
leaves

fall

bark

0
1
2

(b) Bundle diagram represen-
tation

Figure 3.9: Empirical model associated with the measurement contexts {saw, leaves} ×
{fall, bark}.

We now consider an empirical model for which the first agent chooses words which can
be either an adjective or a noun. Specifically, we are interested in the possible meanings
of {cold, light} × {can, cast}. We then consider the following meanings:

1. For cold

a. cold (noun) : The absence of heat

Example: I’m not really accustomed to the cold.

b. cold (noun): Mild viral disease

Example: He caught a cold, that’s why he can’t come.

c. cold (adj): Low temperature

Example: This is a very cold day.

d. cold (adj): Without human warmth

Example: She was very cold, she didn’t smile all night.

2. For can

a. can (noun) : Tin container

b. to can (verb): To preserve food in a can

Example: He cans his own sardines.

c. can (auxiliary verb): To be able to

3. For cast

a. to cast (verb): To throw something in a particular direction

Example: The moon cast a dim light over the field

b. to cast (verb): To choose (actors)

Example: The director cast this famous actor for his new film
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c. cast (noun): Group of actors

Example: The performance from the cast was outstanding.

d. cast (noun): Moulded object

Example: I broke my arm and spent a few months in a plaster cast.

There are many possible meaning combinations (see Fig. 3.10b), and the contextual
nature of the model arises from the fact that only the cast of a film or a play can be cold
in the “distant” sense.

Encoding
Meanings of

cold light can cast

0 winter photons tin throw
1 illness not heavy preserve choose
2 temperature colour able to actors
3 distant ? ? plaster

(a) Encoding of meanings of saw, leaves, fall and bark.

cold

light

can

cast

0
1
2
3

(b) Bundle diagram representation

Figure 3.10: Empirical model associated with the measurement contexts {cold, light} ×
{can, cast}.

Finally, we conclude this subsection by noting that syntactically ambiguous models can
be studied using the stricter model of Section 3.1.1. Indeed, if the object of an auxiliary
verb is a verb itself, then we can use the ambiguous verb can, with ambiguous objects
fish and spam. In order to activate each meaning (and syntactic role) of fish and spam,
we compare the effect of can on these objects with the unambiguous verbs eat and will.
Hence, we only consider the “preserve” and “able to” meanings of can, the unique (verb)
meanings of both eat and will as well as:

1. Fish:

a. fish (noun) : Animal

b. to fish (verb): To catch fishes

c. to fish (verb): To look for something

2. Spam:

a. spam (noun) : tinned ham
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b. to spam (verb): To send (a lot of) unwanted emails

Now, considering the following encoding:

Encoding
Meanings of

can fish spam

0 preserve animal ham
1 able to catch fish email
2 ? search ?

Figure 3.11: Encoding of meanings of can, fish and spam.

we obtain the following empirical model:

verb object (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

can fish 1 0 0 0 1 1 0 0 0
can spam 1 0 0 0 1 0 0 0 0
eat fish 1 0 0 0 0 0 0 0 0
eat spam 1 0 0 0 0 0 0 0 0
will fish 0 1 1 0 0 0 0 0 0
will spam 0 0 1 0 0 0 0 0 0

Figure 3.12: Empirical model associated with the measurement contexts {can, eat, will}×
{fish, spam}.

which is strongly contextual. Note that bundle diagrams for more than 2 choices of mea-
surements from one party are considerably harder to read than for the other models
considered here. However, the contextuality of the model can be shown from the observa-
tion that the meanings of fish and spam activated with the eat (respectively will) context
do not extend to any local section in the support of the will (respectively will) context.

3.1.3 Discussion and further remarks

Signalling In the quantum mechanical setting, the no-signalling condition is tradition-
ally considered as an essential property that an empirical model has to satisfy, in order
to include the possibility that the two parties are space-like separated (and assuming the
principle of causality). However, using the model presented in Fig. 3.2, we have:

(pen, sheep)|pen = [pen 7→ enclose] 6= (pen, note)|pen = [pen 7→ write] (3.1)

Even more so, most of the possible choices of measurement contexts for A and B do not
lead to a valid empirical model, for example we have seen that the following experiment

verb object (0,0) (0,1) (1,0) (1,1)

pen sheep 0 0 1 0
pen note 1 0 0 0
herd sheep 1 0 0 0
herd note 0 0 0 0

is not an empirical model, since the last row is not a distribution. All of these consid-
erations boil down to the same principle, namely that some combinations are “rejected”
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because there is not a situation in our experience when something/someone herds a note
or write a sheep. Hence, we believe that the apparent form of the empirical models is
due to post-selection, which is operationally equivalent to a signalling scenario (see Fig.
3.13d).

choice A choice B

(a) No-signalling Bell sce-
nario

choice A

choice B

(b) Signalling Bell scenario

choice A choice B

world
knowledge

(c) Bell scenario with post-
selection

choice A choice B

U
=

choice A choice B

U
=

choice A

choice B
U

=
choice A′

choice B′

(d) Operational equivalent of post-selected and signalling systems.

On the other hand, signalling models have been studied in the context of Contextuality-
by-Default [27, 26], which adopts the following philosophy: any (joint) distributions ob-
tained in different measurement contexts are intrinsically not jointly distributed (they
are all contextual “by default”), and the notion of contextuality merely reflects the fact
that it might or might not be possible to impose a joint probability distribution on these
stochastically uncorrelated distributions. Hence, from this point of view, the no-signalling
property is not essential, and moreover hinders generalisations such as [25] where some
measurements or properties are allowed to be “undefined” in some measurement contexts.

Finally, one may wonder if all such contextual examples in natural language which are
signalling. The answer is no. Such an example is the following:

verb object (0,0) (0,1) (1,0) (1,1)

tap pitcher 1 1 0 1
tap cabinet 0 1 1 0
box pitcher 1 0 0 1
box cabinet 0 1 1 0

(a) Empirical model

tap

box

pitcher

cabinet

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).
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In this example, the meanings of tap and coach are encoded as before, and:

Encoding
Meanings of

box pitcher

0 put in boxes jug
1 fight baseball player

Figure 3.15: Encoding of meanings of box and pitcher.

Then, assuming that one can touch (tap) a single person but not a group of people (e.g.
the cabinet), then the obtained model is weakly contextual and no-signalling. However,
the above empirical model is no-signalling w.r.t its possibilistic distribution (i.e. w.r.t. to
its support); however, as we will see in the analysis in Section 3.2, we expect that this
model is signalling w.r.t. to its standard probabilistic representation.

Surreal and metaphorical contexts All of the above empirical models are filled
w.r.t. common sense and realistic meaning. However, one may want to consider a much
more general model, where all possible meanings combinations are indeed possible, and
the only 0 probability events corresponds to the assignment of an “undefined” meaning
to a given word. This is, in principle, not incompatible with the framework presented
here, and in particular, every choice of measurement contexts will lead to a valid empirical
model. However, if all possible meanings are allowed, then the empirical model cannot
be possibilistically contextual. On the other hand, one may consider the probabilisitic
model described in the next section: we would then expect that the sections which are
not realistic or plausible can appear in text corpora with a low, but non-zero probability.
Another experiment that one may consider is to appeal to human interpretation: similar
to the experiment presented in [6], one could ask a number of people to assign a meaning
to different ambiguous word combinations, including some implausible combinations, e.g.
sparkling yard. This would, on the other hand, lead to a very different project.

Meaning selection and degree of contextuality Finally, some remarks can be made
in the choices of different meanings that are considered. Indeed, while for some words,
the different meanings are almost completely unrelated (e.g. bark), some of the different
senses of the words considered are less clearly divided (e.g. light). More importantly,
one can see that altering the ways of dividing the possible meanings changes the number
of local sections which do not extend to a global assignment, and hence, can change
the degree of contextuality of a model; for example, if all words are trivially associated
with a single meaning, then all of these models become non-contextual. However, the
choices in this report were made so that we obtain the most “coarse-grained” model for
which contextuality is apparent; note that fine-graining any senses further can increase
the contextuality of the model (i.e. local sections may split, hence, global assignments
may not be globally consistent anymore), but not decrease the contextuality of each of
the models.

Although many such possibilistically contextual examples can be found using this frame-
work, some combinations of ambiguous words may be consistent with a superposition of
global assignments. In order to further the analysis, we therefore want to consider such
examples and investigate whether they are (probabilisitically contextual).
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3.2 Probabilisitic contextuality

We consider the same types of models as for the previous section, but under a proba-
bilsitic point of view. In particular, we note that we do not need to consider any of the
previously discussed examples, as they were shown to be possibilisitically contextual (and
recall that possibilisitc contextuality is strictly stronger than probabilistic contextuality).
Hence, we will here consider empirical models which Boolean distribution presheaf has a
global section.

The BNC The different probability distributions are obtained from the The British
National Corpus (BNC)[1]. The BNC is an open-source text corpus comprising 100
million words, spread across documents of different nature (including press articles, fic-
tion, transcription of spoken language, and academic publications). The BNC is part-
of-speech tagged, hence, grammatical nature and the lemma form (i.e. singular and/or
non-conjugated form of the word) is available. On the other hand, semantic interpretation
of each of the recorded occurrences of the phrases on interest were made by hand3.

3.2.1 Semantically ambiguous combinations

As in Section 3.1, we start with purely semantic ambiguous combinations, and fix the
grammatical roles of each of the agents’ choices.

The first example is a verb−object example with contexts in {saw, bore}×{cabinet, beam}.
In particular, in the case of saw and bore, we only consider the different verbs it refers
to as different meanings. Hence, using the same encoding of saw, beam and cabinet as in
Fig. 3.5a, with the following meaning of bore:

a. bore: Past tense of to bear

b. to bore: To make holes

Example: He bored holes on the wall.

and adopting the encoding 0 : bear, 1 : holes. We can make some remarks on this choice
of meanings under consideration. Firstly we are missing out a meaning of to bore, namely
to make others bored, which would potentially be activated in the context of cabinet
(i.e. governmental body); however, no such instance appeared in the BNC, and if it were
going to appear in a larger corpus, this will lead to a possibilisitically contextual model,
and hence automatically probabilistically contextual. In addition, the verb to bear is
itself ambiguous (for example, the meaning of to bear is different in the two sentences
I can’t bear the sound of a fork on a plate or He was bearing forks and plates from the
cupboard.); however, due to the lack of occurences of the meaning “endure” in with the
present object-contexts, we decided to group all of the meanings of to bear together. The
obtained empirical model is depicted in Fig.3.16.

In order to show the contextuality of this model, we use the fact that finding a global
section on a probabilistic model is equivalent to solving the system Mx = v in the
positive real numbers, where v is the column vector associated with the empirical model
(see Section 1.3), and M is the incidence matrix given by (1.15) (see Appendix A for the

3Sense-tagged corpora would have been more convenient to use here; however, these corpora are usually
smaller, more restricted, and hence would not give us enough data.
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verb object (0,0) (0,1) (1,0) (1,1)

saw cabinet 5/8 1/8 0 2/8
saw beam 3/5 1/5 0 1/5
bore cabinet 3/7 2/7 0 2/7
bore beam 1/5 2/5 0 2/5

Figure 3.16: Empirical model associated with the measurement contexts {saw, bore} ×
{cabinet, beam}.

full incidence matrix and empirical model vector). In particular since all elements of x
have to be positive, then we need to have x9 = x10 = x11 = x12 = x3 = x4 = 0 since:

x9 + x10 + x11 + x12 = s3 = 0 (3.2)

x3 + x4 + x11 + x12 = s11 = 0 (3.3)

Then, using local sections s1 and s9, this gives respectively:

x1 + x2 =
3

7
(3.4)

x1 + x2 =
5

8
(3.5)

which leads to a contradiction.

We now consider an adjective − noun model with adjective contexts green and even,
and noun contexts cabinet and tip. We adopt the same meanings and encoding of green
as described in Fig. 3.7a and of cabinet as above. We moreover consider the following
readings of even and tip:

1. For even:

a. even : Flat and smooth

Example: You can see your reflection on the even surface of the water.

b. even: Balanced, of equal size

Example: The school achieved an even gender balance among staff and stu-
dents.

2. For tip

a. tip: Advice, indications of potential leads

Example: They couldn’t solve the problem, but the teacher gave them a tip.

b. tip: The (pointed) extremity of something

Example: I can barely reach it from the tips of my fingers.

The recorded frequencies are recorded in the empirical model in Fig. 3.17
The support of this model has exactly two global assignments (see Fig. 3.18), namely

[(green, even, cabinet, tip) 7→ (colour, flat, furniture, pointed)] and [(green, even, cabinet, tip) 7→
(environment, balanced, government, advice)]. Hence, checking whether the probabilis-
tic model of Fig. 3.17b has a global section is exactly the same as finding α, β ∈ [0, 1]
such that α+ β = 1 and the empirical model is given as:

α · [(green, even, cabinet, tip) 7→ (colour, flat, furniture, pointed)]

+ β · [(green, even, cabinet, tip) 7→ (environment, balanced, government, advice)]
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Encoding
Meanings of

even tip

0 flat advice
1 balanced pointed

(a) Encoding of meanings of even and tip.

adj noun (0,0) (0,1) (1,0) (1,1)

green cabinet 0 1/8 7/8 0
green tip 0 12/17 5/17 0
even cabinet 0 1/22 21/22 0
even tip 0 21/25 4/25 0

(b) Empirical model

Figure 3.17: Empirical model associated with the measurement contexts {green, even}×
{cabinet, tip}.

Or, in terms of tables:

0 1/8 7/8 0

0 12/17 5/17 0

0 1/22 21/22 0

0 21/25 4/25 0

=

0 α 0 0

0 α 0 0

0 α 0 0

0 α 0 0

+

0 0 β 0

0 0 β 0

0 0 β 0

0 0 β 0

which is clearly impossible.

Figure 3.18: Bundle diagram for the possiblistic model associated with the measurement
contexts {green, even} × {cabinet, tip}.

3.2.2 Syntactically ambiguous combinations

Finally, consider an example of an empirical model with syntactically ambiguous con-
texts. We will consider the contexts {press, box}×{can, leaves} with the following mean-
ings:

1. For press:

a. to press (verb): Exert pressure upon something

Example: You can press Ctrl-Z to undo the previous operation.

b. press (noun): The print media publishing newspapers and magazines

c. press (noun): Device used to apply pressure.

Example: They used to use printing presses before the invention of printers.

2. For box

a. to box (verb): To put in a box

Example: Each piece is boxed with a certificate of authenticity.
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b. to box (verb): To fight, to practice boxing

Example: He used to box for England.

c. box (noun): Container

Example: They sent a box of chocolates as an apology.

with the encoding:

Encoding
Meanings of

press box

0 push put in boxes
1 media fight
2 machine container

Figure 3.19: Encoding of meanings of press and box.

and can and leaves defined (and encoded) as in Section 3.1.2.
As in Section 3.2.1, we record the respective frequencies associated with each context

from the BNC, giving the empirical model in Fig. 3.20.

A B (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

press can 2/25 0 0 0 0 41/50 0 1/50 2/25
press leaves 0 6/13 0 5/13 0 0 2/13 0 0
box can 7/74 0 0 0 0 0 0 1/74 33/37
box leaves 0 2/3 0 0 0 0 1/3 0 0

Figure 3.20: Empirical model associated with {press, box} × {can, leaves}.

As for the previous example, one can show that this model is probabilistically contex-
tual by noting that the only global assignment of the support which includes [press 7→
push] is [(press, box, can, leaves) 7→ (push, put in boxes, tin, leaf)] (see Fig. 3.21). This
implies that all the probabilities from the support global assignment have to be equal in
order to have a global assignment in the possbilistic model as well; since this is not the
case, we conclude that the probabilistic model is indeed contextual.

A B (0,0) (0,1) (0,2) . . .

press can 1 0 0 . . .
press leaves 0 1 0 . . .
box can 1 0 0 . . .
box leaves 0 1 0 . . .

(a) Support of the model

(b) Bundle diagram

Figure 3.21: Possibilistic analysis of the empirical model associated with {press, box} ×
{can, leaves}. The global assignment of interest is depicted in blue.
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3.2.3 Discussion of the results

The fact that all of these models are (probabilisitically) contextual shows that the
obtained probability distributions cannot be described as the marginals of a global prob-
ability distribution over all possible global assignments. That is, the measurement context
which is considered plays an important role in how the meaning probabilities are assigned.
In future work, we would like to get a quantitative measure of the contextuality of the dif-
ferent empirical models presented here, using for example using the contextual fraction[4]
or the “degree of contextuality” from the Contextuality-by-default framework[25].

Signalling Recall that most of the models described in 3.1 were signalling (in the
Boolean distributions). Hence, one can ask whether these probabilistic models are also
signalling (note that their Boolean distributions are no-signalling). As we did in Section
3.1, we consider the marginal probabilities from, say Fig.3.16, and observe that:

(saw, cabinet)|saw =

(
5

8
+

1

8

)
[saw 7→ see] +

1

4
[saw 7→ cut]

=
3

4
[saw 7→ see] +

1

4
[saw 7→ cut] (3.6)

(saw, beam)|saw =

(
3

5
+

1

5

)
[saw 7→ see] +

1

5
[saw 7→ cut]

=
4

5
+

1

5
[saw 7→ see] +

1

5
[saw 7→ cut] (3.7)

i.e. (saw, cabinet)|saw 6= (saw, beam)|saw, and the model is again signalling. Similar
analysis can be made for the other probabilistic models.

In this chapter, we have studied the meaning behaviour of combinations of ambiguous
words. In particular, we have shown that meaning combinations in natural language
exhibits features which are similar to contextuality as defined in the context of quantum
mechanics.



Chapter 4

Syntactic models and
Garden-path sentences

In this chapter, we will move away from Bell-type experiments, and study a way of using
presheaves in disambiguitating sentences that are syntactically and semantically ambigu-
ous. Indeed, the model considered here will not make use of any agent, and measurement
contexts will correspond to different subphrases of a given sentence. In particular, we
will focus on so-called garden-path sentences. Garden-path sentences are sentences which,
although grammatically correct, we lead the reader to adopt a likely interpretation (ac-
cording to its experience), which will turn out to be incorrect; for example I convinced
her children are noisy, or The man who hunts ducks out on weekends.

Recall that presheaves are used to study the transition from local behaviour to global
behaviour. With this analysis, we expect to model this effect using presheaves, by simu-
lating how different possible meanings are selected to construct bigger and bigger phrases.
We start by constructing all the possible choices of interpretations that can be made as one
reads the sentence, and then identify the only one that is grammatically consistent. We
then add probabilities to the framework as to “rank” the possible choices at each stage
to then conclude that the choices with higher probabilities do not lead to the correct
interpretation. We will consider the following examples of garden-path sentences:

- Complex houses students

- The horse raced fell

- The old man the boat

Sentences to topological spaces For each word in the sentence, we associate a vertex
(0-simplex). Then, higher order simplices are added as follows: we add a n − 1-simplex
(n−1-dimensional generalised triangle) across n words if the n-word combination can form
a n-words phrase that can be found in natural language, or even, if they are grammatically
sound. For example:

- If a sentence contains the words old and man, an edge (1-simplex) will join the
vertices representing old and man;

- If a sentence contains the words the, old and man, a triangle (2-simplex) will be
joining the, old and man;

- If a sentence contains the words the, very, old and man, the respective vertices will
for a tetrahedron (3-simplex);

41
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- etc.

Note that a n + 1-words (grammatical) sentence should be represented by a n-simplex.
Hence, since n-simplices with n > 4 are hard to represent on the plane, we will simplify
some of the diagrams (but the reasoning also generalises to higher dimensions), in par-
ticular, only the critical simplices will be represented, i.e. simplices which plays a direct
role in the comprehension of garden path sentences. For example, for the sentence the old
man the boat we will consider the simplicial complex in Fig.4.1.

Figure 4.1: The old man the boat. The simplices that are ignored are The old man boat,
old man the boat and the overall sentence the old man the boat.

Constructing a presheaf For each word, we associate its set of meanings. For each
of the larger simplices, we select the different possible meanings of each word which can
be activated in the corresponding phrase (see Fig. 4.2).

Here, a global assignment will represent a consistent way of assigning meaning to all
the words s.t. the global sentence is grammatically correct. Hence, by definition of a
garden path sentence, such a global assignment will exist. However, we expect that, when
adding probabilistic weights, the simplices with the “highest” probabilities will not form
an overall simplex, i.e. is not grammatically consistent.

4.1 Qualitative and logical analysis of garden-path sentences

In this section, we will be interested in the global coherence of the sentences, the peculiar
features of garden-path sentences will be investigated in the next section.

We start with the easiest three-words garden-path sentence Complex houses students.
Here, the ambiguity comes from the words complex, which can be a noun or an adjective
(or compound-noun, but it is easier to count this as an adjective here), and houses which
can be a noun or a verb. In particular, the compound houses students can only be seen as
a verb-noun phrase, hence, the ambiguity mainly comes from the phrase complex houses,
which can be:

- Houses in a complex (adjective-noun);
- The complex is hosting (noun-verb);
- Complicated houses (adjective-noun).

The latter is a very unusual meaning, which was not found in the BNC, and we will,
therefore, decide to ignore it. In particular, we note that the most common meanings
of complex and houses do not give rise to a very likely meaning composition, which
echos the analysis carried out in Chapters 3. In this example (see Fig. 4.3), the only
correct interpretation, which is coherent as a whole sentence, is: the complex provides
accommodation for students.
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noun
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The

old

man

noun

noun
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The
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man

noun

noun
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verb

(f) The old(noun) man(verb)

Figure 4.2: Bundle diagram of the phrase the old man and meaning of all the simplices
(the simplices of interest are depicted in blue).

We now want to do the same analysis for the sentence The horse raced fell. In this
example, all the words are unambiguous apart from raced which can be either an adjective
or a verb. The possible meanings of the phrase The horse raced are the following:

• The horse was running in a competition or The horse was running – we will consider
those both as the same;

• The horse that was raced (e.g. in a competition) or The horse was overtaken – as
for the other syntactical choice, we will assume those two meanings to be equivalent.

The corresponding bundle diagram is shown in Fig. 4.4.

We finally present a more intricate example, The old man the boat. As previously
mentioned, this example is too complex to represent in full, but a simpler complex can
be used (and the remaining simplices can be extended in the only possible way). There
are two sources of ambiguity in this sentence, namely old (either adjective or noun) and
man (either noun or verb). Accordingly, the phrases The old man and old man boat have
two possible meanings which we will discuss:
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complex

houses

students

complicated

of a complex

a complex

accomodates

building

Figure 4.3: Bundle diagram associated with the sentence Complex houses students. The
global assignment The complex accommodates students is depicted in green.

The

horse

raced

fell

adj

verb

Figure 4.4: Bundle diagram of The horse raced fell. The highlighted complex corresponds
to the unique global assignment associated to this sentence, and the only correct reading
is The horse that was raced fell.
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The only reading for which the old man the boat is coherent as a sentence is The “old”
is taking care of the boat.

4.2 Probabilities in global assignments

In order to understand the peculiar nature of garden-path sentences, we decompose the
considered sentences in terms of the different chronological “stages”, for example in the
sentence Complex houses students, we consider the stages Complex, Complex houses and
finally Complex houses students, and compute the different degrees of likeliness of the
competing meanings from data collected from the BNC.

We first note that the initial stage is always a single word without context, so we can
assume that the word is in its “ground state”, i.e. all possible meanings are equally
probable. Hence, we start the analysis of the sentence Complex houses students at the
stage Complex houses, where the two competing meanings are “houses in a complex”
and “the complex accomodates”. At this stage, the possiblistic distribution presheaf
associated with Complex houses is depicted (as a bundle diagram) in Fig. 4.5b. We note
that this presheaf has two global assignments and a global section. In particular, there is
also a global section in the probabilistic distribution presheaf, which is is given by:

d1(x) =

{
2
3 if x = [(complex, houses) 7→ (adjective, noun)]
1
3 if x = [(complex, houses) 7→ (noun, verb)]

(4.1)

where these probabilities are obtained from observed frequencies in the BNC. Now, we
note that the global assignment, at the stage Complex houses, with highest probability
does not extend to a global assignment in the next stage: Complex houses students (see
Fig. 4.5). Hence, if these observed frequency are representative of the “degree of comitte-

complex

complicated

of a complex

a complex

(a) Complex

complex

houses

complicated

of a complex

a complex

accomodates

building

(b) Complex houses

complex

houses

students

complicated

of a complex

a complex

accomodates

building

(c) Complex houses students

Figure 4.5: Decomposition of the sentence Complex houses students in its different stages.

ment” that one associate with a given reading, then this explains the apparent difficulty
of the comprehension of the sentence since one has to switch the rankings of plausibil-
ity of the different meanings of the phrase Complex houses at the stage Complex houses
students.

A similar observation can be made for the garden-path sentence The horse raced fell.
Indeed, the phrases are all unambiguous up to the stage The horse raced. At this stage,
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one sees that there are two global global assignments, leading to a global section in the
probabilistic distribution presheaf:

d2(x) =

{
71
90 ' 0.79 if x = [raced 7→ verb]
19
90 ' 0.21 if x = [raced 7→ adjective]

(4.2)

(note that the and horse are unambiguous, i.e. has a deterministic outcome under this
model, and doesn’t add any information to the global assignments). As for the previous
example, one see that the global assignment with the highest probability at the stage The
horse raced does not extend to a global assignment in the final stage The horse raced fell,
which implies that, once again, the reader has to revise its choice of most likely reading
at a later stage.

The

horse

raced

adj

verb

(a) The horse

The

horse

raced

adj

verb

(b) The horse raced

The

horse

raced

fell

adj

verb

(c) The horse raced fell

Figure 4.6: Decomposition of the sentence The horse raced fell in its different stages.

Finally, in the example The old man the boat, we observe a progression as depicted in
Fig.4.8. The turning point occurs at the stage The old man (Fig. 4.7b), where one can
find the following global section (in the probabilstic distribution presheaf):

d3(x) =

{
3559
3561 ' 0.9994 if x = [(old,man) 7→ (adjective, noun)]

2
3561 ' 0.0006 if x = [(old,man) 7→ (noun, verb)]

(4.3)

where once again, the meaning which is not part of the global assignment at the final stage
comes up with (a much) higher probability. We also make a couple of additional remarks
on this example. At the stage, The old, there is only one possible global assignment,
namely with old being a noun; even if this is fairly unlikely to appear in natural language,
if the phrase The old appears without context, the only possible meaning of the whole
phrase available to a reader is indeed to consider old as a noun. In addition, at the final
stage appears an another local section compatible with old man being an adjective-noun
phrase, which is however, not part of a global assignment. We decided to include this local
section since a reader might consider an incomplete or grammatically incorrect meaning
instead of the odd meaning presented. Indeed, these two local sections appeared in our
dataset with respective frequencies:

P ([(old,man, boat) 7→ (adjective, noun, noun)]) =
3

4
(4.4)

P ([(old,man, boat) 7→ (noun, verb, noun)]) =
1

4
(4.5)

where the only occurrence of the latter was indeed the garden-path sentence considered
here.



4.3. DISCUSSION AND FUTURE RESEARCH DIRECTIONS 47

The

old

man

noun

noun

adj

verb

(a) The old

The

old

man

noun

noun

adj

verb

(b) The old man

The

old

man

the

noun

noun

adj

verb

(c) The old man the

The

old

man

the

boat

noun

noun

adj

verb
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Figure 4.7: Decomposition of the sentence The horse raced fell in its different stages.

Figure 4.8: Decomposition of the sentence The old man the boat in its different stages.

4.3 Discussion and future research directions

We interpret the obtained results as follows. The possibilistic analysis of the different
garden-path sentences showed that all models were compatible with a unique global as-
signment; therefore, there is a unique way of reading those sentences which is compatible
with the structure of English grammar. We also note that if there were more than one
global assignment associated, this would mean that the sentence has an ambiguous mean-
ing, and hence, that extra context is needed in order to fully disambiguate the sentence
(for example the sentence I can fish would have three different global assignment, corre-
sponding to I am able to catch fishes, I am able to search for information and I put fishes
in tin cans). In addition, there were, in each possibilistic model, at least one local section
which does not extend to a global assignment. This shows that there are some inter-
pretations of subphrases which do not lead to a consistent meaning when considering the
whole sentence. Finally, the probabilistic analysis unveiled that these globally inconsistent
phrases come with higher probabilities, and hence the sentences appear “ungrammatical”
or incorrect at first sight.
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Future research directions The model presented in this chapter is fairly basic and
highly made up of intuition, hence, we would want to study this model in more details
in future work. In particular, it has a clear intuitionistic flavour, so one promising way
of extending this research would be to use for example topos theory[32, 47], where the
different stages of truth will be the chronological stages and so on. In addition, this bears
similarities with the concept of filtrations from topological data analysis[50], so might
want to investigate that as well.

A more long-term goal would be to embed this analysis into a general framework that
could be used for disambiguation in a discourse. This would be of particular interest when
considering ambiguous sentences, i.e. sentence with more than one global assignment.



Conclusion

In this report, we have investigated some of the contextual features of natural lan-
guage, using the sheaf-theoretic formalism introduced in [5, 3]. In particular, we have
shown that two-words phrases that are ambiguous do exhibit contextuality. However, the
analogy with quantum measurement breaks when considering the marginal probability
distribution: it does appear that these “local” probability distributions are distinguish-
able for different “measurement contexts”, which shows that some global interaction also
needs to happen when meaning interact. Furthermore, we have shown that meaning com-
bination also gives rise to contextual models when considering the combinations of words
in sentences. This is effect is particularly magnified in sentences in which low-probability
readings somehow carries the most prominent roles.

This project gives rise to promising avenues for future research. For example, some
evidence suggests that the framework described in Chapter 3 for meaning combinations
can be adapted into a model similar to the quantum-like concept combination model
proposed by Aerts and Gabora (see [6, 7] and Section 2.2.2), where words would take the
place of concepts, and meaning the place of exemplars. In addition, we might consider
extending the quantitive analysis of this model by quantifying the degree of contextuality
(e.g. using [4, 25]) and considering larger text corpora in order to have more accurate
frequencies. As for the model presented in Chapter 4, an interesting continuation of this
study might be to allow for references by identifying some of the simplicies of separate
phrases. This would in particular be appealing in the context of anaphora resolution.
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Appendix A

The incidence matrix

The (augmented) incidence matrix for a bipartite Bell scenario (with two choices of
binary measurements for each party) is given by:

M =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



(A.1)

Hence, given an empirical model as depicted in Fig. 1.3a, the systems that needs to
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be solved is:



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16



=



s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

1



(A.2)

with xi ∈ [0, 1] for all i. For example, taking the Bell scenario depicted in Fig. 1.2,
this gives:



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16



=



1/2
0
0

1/2
3/8
1/8
1/8
3/8
3/8
1/8
1/8
3/8
1/8
3/8
3/8
1/8
1



(A.3)

In particular, the rows highlighted in red imply that:

x1 + x2 + x3 + x4 =1/2 (A.4)

x2 + x4 + x6 + x8 =1/8 (A.5)

x3 + x4 + x11 + x12 =1/8 (A.6)

x1 + x5 + x9 + x13 =1/8 (A.7)

Now, (A.5) + (A.6) + (A.7) leads to:

x1 + x2 + x3 + 2x4 + x5 + x6 + x8 + x9 + +x11 + x12 + x13 = 3/8 (A.8)
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and in addition we also need to have (A.4) ≤ (A.5) + (A.6) + (A.7), which leads to a
contradiction since 1/2 > 3/8



Appendix B

Contextual examples: meaning
combinations

B.0.1 Ambiguous verb in unambiguous context

We will here consider some verb-object and subject-verb examples.

Object context

Let’s consider an example of two ambiguous verbs (saw and tap) with unambiguous
objects:

verb object (0,0) (0,1) (1,0) (1,1)

saw tree 1 0 1 0
saw person 1 0 0 0
tap tree 1 0 0 0
tap person 1 0 1 0

(a) Empirical model

saw

tap

tree

person

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

The meanings are encoded as follows (ignoring all other meanings1):

Outome saw tap

0 see touch
1 cut record

The unambiguous meanings are once again sent to 0. The reasoning is:

• You can both saw and see a tree; you can both touch and record a human being;

1The verb tap has other meanings, e.g. humans have always tapped natural resources. or They know
how to tap (dance). But those meanings are incompatible with the objects presented here, so the model
is not per sei incomplete.
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• You can’t saw a human being (debatable I suppose, but even if this is possible, it
doesn’t change the contextuality of the model, as long as you can’t record a tree; these
cases would become less debatable when co-occurrence probabilities are collected from
corpora); and you can’t record a tree.

This model is weakly contextual.

B.0.2 Subject context

With two ambiguous verbs as well, we have for e.g.:

subject verb (0,0) (0,1) (1,0) (1,1)

car lap 1 0 0 0
car saw 1 0 0 0

human lap 1 1 0 0
human saw 1 1 0 0

(a) Empirical model

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

with the same encoding of all the words as in the main text (Section 3.1).

B.0.3 Ambiguous noun in umambiguous context

We now consider with ambiguous nouns in contexts. The results are similar to the ones in
Section B.0.1, and we will interested in the following situations: verb−noun, noun−verb
and adjective− noun.

Acted on context

For the first example, we consider the noun beam which we associate the meanings:
[beam : light 7→ 0, beam : stick 7→ 1] (ignoring other meanings), then we can consider the
following:

noun verb (0,0) (0,1) (1,0) (1,1)

beam shine 1 0 0 0
beam sit 0 0 1 0
torch shine 1 0 0 0
torch sit 1 0 0 0

(a) Empirical model

beam
torch

shine

sit

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.3: Stronger model



60 APPENDIX B. CONTEXTUAL EXAMPLES: MEANING COMBINATIONS

which is strongly contextual. If we moreover assume that a (light) beam can sit, then
we have the weaker model:

noun verb (0,0) (0,1) (1,0) (1,1)

beam shine 1 0 0 0
beam sit 1 0 1 0
torch shine 1 0 0 0
torch sit 1 0 0 0

(a) Empirical model

beam

torch

shine

sit

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.4: Weaker model

Acting on context

Assuming that we cannot hear the bark of a tree, and we cannot see the bark of a dog,
the following empirical model is strongly contextual:

verb noun (0,0) (0,1) (1,0) (1,1)

see bark 1 0 0 0
see film 1 0 0 0
hear bark 0 1 0 0
hear film 1 0 0 0

(a) Empirical model

see

hear

bark
film

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

where for bark : [bark : tree 7→ 0, bark : dog 7→ 1].

Similarly, consider the following meanings of plant and roll :

Outcome plant roll

0 vegetable bread
1 factory tube

the following empirical model is weakly contextual:
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verb noun (0,0) (0,1) (1,0) (1,1)

eat plant 1 0 0 0
eat roll 0 1 0 0
buy plant 1 1 0 0
buy roll 1 1 0 0

(a) Empirical model

eat

buy

plant

roll

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Modifying context

We first note that here we only consider the individual meanings of each of the words,
not the meaning of the global phrase; for example, the meanings of the phrase red pencil,
“pencil that writes in red” or “pencil which is red” are considered to be equivalent. We
start by considering the noun perch:

• A fish perch can be alive; so does a human

• A perch (rod) can be strong; once again so does a human, and I suppose so does a
fish

• A perch (rod) cannot be alive

Then, the following empirical model is weakly contextual:

modifier noun (0,0) (0,1) (1,0) (1,1)

alive perch 1 0 0 0
alive human 1 0 0 0
strong perch 1 1 0 0
strong human 1 0 0 0

(a) Empirical model

alive

strong

perch

human

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

where [perch : fish 7→ 0, perch : rod 7→ 1].

Now consider the two ambiguous nouns file, here only document (0) or tool (1), and
pitcher, jug (0) or baseball player (1). Then assuming that the a tool or a baseball player
cannot be filled, while a document or a jug can:
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modifier noun (0,0) (0,1) (1,0) (1,1)

filled file 1 0 0 0
filled pitcher 1 0 0 0
helpful file 1 1 0 0
helpful pitcher 1 1 0 0

(a) Empirical model

filled

helpful

file

pitcher

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.8: Weaker model

If moreover, we assume that a jug cannot be helpful (i.e. it is unlikely to describe a
jug as helpful), then the model becomes strongly contextual:

modifier noun (0,0) (0,1) (1,0) (1,1)

filled file 1 0 0 0
filled pitcher 1 0 0 0
helpful file 1 1 0 0
helpful pitcher 0 1 0 0

(a) Empirical model

filled
helpful

file

pitcher

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.9: Stronger model

B.0.4 Ambiguous adjectives in unambiguous context

As for the previous section, only the meaning of the adjectives individually are considered
here. In addition, the only situation considered is adjective− noun.

Let’s consider the adjective green (colour: 0, environment-friendly: 1). It gives rise to
the following strongly contextual example:
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adjective noun (0,0) (0,1) (1,0) (1,0)

green paint 1 0 0 0
green policy 0 0 1 0
new paint 1 0 0 0
new policy 1 0 0 0

(a) Empirical model

green

new

paint

policy

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Note that if the paint can also be made environmental-friendly the model remains con-
textual (but weakly contextual). We can also slightly modify this example by substituting
new with the ambiguous adjective bright ([bright : light colour 7→ 0, bright : clever 7→ 1]),
we get:

adjective noun (0,0) (0,1) (1,0) (1,1)

green paint 1 0 0 0
green policy 0 0 1 0
bright paint 1 0 0 0
bright policy 0 0 1 0

(a) Empirical model

green

bright

paint

policy

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.11: Stronger model

which is also strongly contextual. If we now loosen the assumptions that paint can be
clever or environment-friendly, the model becomes weakly contextual:

adjective noun (0,0) (0,1) (1,0) (1,1)

green paint 1 0 1 0
green policy 0 0 1 0
bright paint 1 0 1 0
bright policy 0 0 1 0

(a) Empirical model

green

bright

paint

policy

0
1

(b) Bundle diagram (local sections
which cannot be extended are depicted
in red).

Figure B.12: Weaker model
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